Precalculus 11

Since grade 8, we've been solving right triangles involving 2 key concepts:

- <u>Pythagoras Theorem</u>: given 2 sides of a right triangle and find the 3rd side
- <u>Trigonometric Ratios</u>: given a side and an angle find a 2nd side, or given 2 sides determine the missing angle

Problem is, not every triangle will be a right triangle nor can one be easily made. In a situation like this we apply two new concepts that addresses this issue:

- We use the **Sine Law**, including the ambiguous case, and/or
- Use the **Cosine Law**

The <u>Sine Law uses ratios</u>, that's been derived using right triangles, basic trig, and algebra, to <u>compare angles and sides</u>.

Example 1: Given the triangle, determine the relationship of the sides and angles.

Basically, for any triangle that is not right angled, use the sine law.

• It compares an angle and its opposite side, expressed as a ratio, and equates this to another ratio of a different angle and its opposite side

Example 2: Given ΔMNO , $\angle N = 115^{\circ}$, MN = 4.5, and MO = 10.8, determine the lengths and angles of the triangle to the nearest tenth.

Example 3: Given $\triangle ABC$, $\angle A = 37^{\circ}$, AB = 15, and $\angle C = 72^{\circ}$, calculate the lengths and angles of the triangle to the nearest tenth

Example 4: The Calgary Tower is located on 9^{th} Ave. S. If you were standing west of the tower and measured the angle of elevation to the top of the tower, your clinometer would read 5.9° . If you traveled 2.9 km so that you're now east of the tower, the angle of elevation measures 10.3° . Determine the height of the tower.

Example 5: The diagram shows the measurements a student will need to use to calculate the height of Mauna Kea, in Hawaii. Determine the height of Mount Kea.

Example 6: The Harbor Center is 125.81 m tall. The angle of elevation from a person's eyes, 1.5 m above the ground, to the top is 43°. When the person moves closer, the angle of elevation is 75°. How much closer to the Harbor Center did the person move? How far is the top of the Harbor Center to the person's eyes?

Homework: